Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.

نویسندگان

  • Guofeng Zhang
  • Marc C Morais
  • Jianying Dai
  • Wenhai Zhang
  • Debra Dunaway-Mariano
  • Karen N Allen
چکیده

The 2-haloalkanoic acid dehalogenase (HAD) family, which contains both carbon and phosphoryl transferases, is one of the largest known enzyme superfamilies. HAD members conserve an alpha,beta-core domain that frames the four-loop active-site platform. Each loop contributes one or more catalytic groups, which function in mediating the core chemistry (i.e., group transfer). In this paper, we provide evidence that the number of carboxylate residues on loop 4 and their positions (stations) on the loop are determinants, and therefore reliable sequence markers, for metal ion activation among HAD family members. Using this predictor, we conclude that the vast majority of the HAD members utilize a metal cofactor. Analysis of the minimum requirements for metal cofactor binding was carried out using Mg(II)-activated Bacillus cereus phosphonoacetaldehyde hydrolase (phosphonatase) as an experimental model for metal-activated HAD members. Mg(II) binding occurs via ligation to the loop 1 Asp12 carboxylate and Thr14 backbone carbonyl and to the loop 4 Asp186 carboxylate. The loop 4 Asp190 forms a hydrogen bond to the Mg(II) water ligand. X-ray structure determination of the D12A mutant in the presence of the substrate phosphonoacetaldehyde showed that replacement of the loop 1 Asp, common to all HAD family members, with Ala shifts the position of Mg(II), thereby allowing innersphere coordination to Asp190 and causing a shift in the position of the substrate. Kinetic analysis of the loop 4 mutants showed that Asp186 is essential to cofactor binding while Asp190 simply enhances it. Within the phosphonatase subfamily, Asp186 is stringently conserved, while either position 185 or position 190 is used to position the second loop 4 Asp residue. Retention of a high level of catalytic activity in the G185D/D190G phosphonatase mutant demonstrated the plasticity of the metal binding loop, reflected in the variety of combinations in positioning of two or three Asp residues along the seven-residue motif of the 2700 potential HAD sequences that were examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure

The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...

متن کامل

Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure

The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...

متن کامل

Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism

Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We de...

متن کامل

Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism.

Decapping enzymes are required for the removal of the 5'-end cap of mRNAs. These enzymes exhibit a specific hydrolase activity, resulting in cleavage between the alpha- and beta-phosphates of the m7GpppN cap to generate both m7GDP and monophosphorylated RNA products. Decapping enzymes have been found in humans, plants and yeasts, and have been discovered more recently in vaccinia virus (D10 pro...

متن کامل

Analysis of the substrate specificity loop of the HAD superfamily cap domain.

The haloacid dehalogenase (HAD) superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All members possess the alpha/beta core domain, and many also possess a small cap domain. The active site of the core domain is formed by four loops (corresponding to sequence motifs 1-4), which position substrate and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 43 17  شماره 

صفحات  -

تاریخ انتشار 2004